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Abstract— Based on the upper bound theorem of plasticity, the 3-D limit analysis of rigid—perfectly
plastic structures is formulated as a discrete nonlinear mathematical programming problem with
only equality constraints by means of the finite element technique. The penalty function method is
used to deal with the plastic incompressibility condition. A direct iterative algorithm is employed in
solving this formulation. At each step of the iteration, the rigid and plastic zones are continually
distinguished, the respective constraint conditions are imposed on them, and the goal function is
modified appropriately. The numerical difficulties caused by the nonlinearity and nonsmoothness
of the goal function and the incompressibility of plastic deformation are overcome. The limit
load multiplier and the associated velocity field computed by the iteration procedure converge
monotonically to the upper bounds of real solutions. The numerical procedure has been used to
carry out the limit analysis for cylindrical shells with part-through slot-type defects under internal
pressure. Numerical examples are given to demonstrate the applicability of the procedure.

1. INTRODUCTION

The limit analysis of structures is a very useful subdiscipline of plasticity, which can
determine the load-carrying capacity of structures and provide the theoretical foundation
necessary for engineering design. When a structure reaches the limit state, purely plastic
strain rates will take place under constant stress distribution and the structure will be turned
into a collapse mechanism. Although the classical upper and lower bound theorems of
plastic limit analysis were established in the 1950s, complete analytical solutions for the
limit loads are difficult to obtain for individual problems with complicated geometric forms
and loading conditions. A computational approach to the limit solution is considered as
the most challenging area. Rapid progress in the finite element technique and mathematical
programming in the last 20 years makes it possible to develop numerical methods for the
limit analysis of structures.

Two numerical approaches have been adopted to deal with the limit analysis problem.
The first is to compute the limit loads by performing a series of suitable incremental elastic—
plastic analyses, as has been done by Argyris (1965), Marcal and King (1967), etc. However,
the step-by-step process may involve excessive computation if only the collapse load and
its corresponding collapse mechanism are required for design purposes. The second
approach rests on the fundamental limit theorems of plasticity and aims at computing
directly the limit load multiplier by combining finite element analysis with the mathematical
programming technique. It has become a main method for solving the problem of limit
analysis of complicated structures. A comprehensive survey of its application to engineering
plastic analysis was given by Maier and Munro (1982). Discretizing the velocity field by the
finite element technique, Hayes and Marcal (1967) proposed a mathematical programming
formulation for the upper bound analysis of plane stress structures. Because of the non-
linearity and nonsmoothness of the goal function, they could only solve it by the primary
coordinate cycle method. Belytschko and Hodge (1970) established a nonlinear math-
ematical programming formulation with the von Mises yield condition as the constraint
for plane stress problems by means of the equilibrium finite element, and solved it by the
SUMT method. Hutala (1976) presented a unified finite element procedure for calculating
upper and lower bounds to the limit load for 2-D plane structures. However, that approach
introduced some stringent hypotheses and the modified exponential penalty function
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method used could not assure that the finite element solution converged to the real limit
load. Anderheggen and Knopfel (1972), Faccioli and Vitiello (1973) and Laudiero (1972)
performed the lower bound analysis as a linear programming problem concerning piecewise
linearized yield surfaces. Casciaro and Cascini (1982) constructed a sequential uncon-
strained programming algorithm using the exponential penalty function method to remove
the plastic yield condition. The computed limit load was neither the real upper bound nor
the lower bound. Christiansen (1981) suggested a mixed finite element approximation to
the infinite dimensional mathematical programming problem of limit analysis. Zhang et al.
(1991) established a finite element mathematical programming formulation for the upper
bound analysis and proposed an efficient algorithm for solving it. However, some difficulties
existed in the application of this approach. Huh and Yang (1991) derived the dual for-
mulation of the lower bound analysis and solved plane stress limit problems using a
combined smoothing and successive approximation algorithm.

Summarizing all the works stated above, we find that some problems still exist in
many algorithms available for limit analysis, such as the complexity of computational
formulation, low efficiency for problem solving and the limited scope of applications, etc.
Numerical limit analysis for 3-D structures is rarely performed in the present literature.
Limit analysis applications are mainly concerned with plane stress—strain and axisymmetric
plate/shell problems. Many numerical methods for the limit solutions are not generally
appropriate for performing 3-D problems. Special considerations are required for the 3-D
limit analysis problem, such as how to establish a concise computational formulation, how
to present an efficient algorithm for solving it and how to deal with the numerical problems
caused by the plastic incompressibility, etc. These problems have not been solved so
far. Therefore, developing efficient, reliable and feasible numerical methods and their
corresponding software for complicated limit analysis of practical engineering structures
has been a main subject in this research field.

This paper develops a general numerical method for 3-D limit analysis problems. A
finite element mathematical programming formulation for the upper bound analysis of
3-D structures is established. The incompressibility condition is dealt with successfully by
the penalty function method. A direct iterative algorithm is used to solve the formulation.
The monotonic convergence of the iterative process is proved.

2. UPPER BOUND FINITE ELEMENT PROCEDURE

2.1. Finite element formulation

Consider a 3-D, rigid—perfectly plastic body V' with the boundary surface S as shown
in Fig. 1. The reference surface tractions 7; ( = 1, 2, 3) are prescribed on a part of the surface,
S,, and the remaining part S, is held in a fixed position. The body reaches the limit state

X
Fig. 1. 3-D rigid—perfectly plastic body loaded by surface tractions.
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under the action of the proportional surface tractions v7; (body forces are ignored), where
v is a monotonically increasing load multiplier.

The 3-D body is previously assumed in the fully plastic state. By adopting the von Mises
yield criterion and the upper bound theorem of plasticity, the mathematical programming
formulation can be constructed as follows

2 ~
v = min: \ga\’[ ey dV (1)
>

s.1. Ju,f,.dSzl, on S, )
N

&y = 3(u,+u), in ¥ @)
u,, =0, in V 4)
w,=0, on S, ®)

In the following discussion, for convenience, the factor ﬁa‘ of the goal function (1) is
omitted temporarily. A

Discretizing eqns (1)~(5) by displacement isoparametric finite elements, the strain rate
vector g, for each element can be expressed in terms of the nodal velocity vector é, for each
element as

&, = Bedv &, = [’Sv 3,1' & \/E Exv \//E 'g)-: \/2: 8.r:]Ta (6)

where B, is the strain matrix.
Let G, = B/ - B, ; the expression ¢,¢; may be written in matrix form as:

Sty = & & =0.G,9,. O

Introducing the velocity boundary condition, assembling the nodal velocity vector 6, for
each element into the global nodal velocity vector 9, extending G, for each element into the
global matrix G with the same dimension as & and using a Gaussian integration technique,
one can write the goal function (1) (i.e. the plastic dissipation work) as

N
J \/%dV = ZJ\ \/53-(}«51’ dV = Z pilJ[i\/ 5TGi5 ’ (8)
vV ¢ JV,

iel
where 7 is the set of all Gaussian integration points and p,, G; and |J|; are the integration
weight, the values of the matrix G and the Jacobian determinant |J| at the Gaussian point
I, respectively.
Substituting the interpolation form of velocity field u, = N4, into eqn (2), we get

FT'é6=1 F= J NT%,. dS, )

-

where F is the equivalent nodal load vector corresponding to the prescribed tractions and
N is the matrix of shape functions.

Based on eqns (8) and (9), we obtain a discrete programming formulation for the
upper bound analysis as follows:
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min: Y’ plJ); /6" Gd (10)

iel
st FTo=1. (11)

The incompressibility condition (4) can be satisfied naturally by modifying the matrix G;
suitably in cases such as plane stresses and plate/shell problems. However, it requires special
treatment for the upper bound analysis of 3-D problems, as discussed in the next section.

2.2. Numerical treatment of the incompressibility condition

The important effect of the plastic flow incompressibility on the overall solution
procedure was first recognized in the classical paper of Nagtegaal ez al. (1974). The impo-
sition of incompressibility constraint in finite element applications is traditionally trouble-
some. How to deal with the incompressibility condition is one of the difficulties in the
numerical upper bound analysis of 3-D structures. Two methods can be used to treat the
incompressibility constraint in the plastic limit range, including the mixed finite element
method and the penalty function method. Of these alternatives the penalty function method
seems particularly attractive in that it has the advantage of being a single-field formulation,
permitting the use of a displacement finite element code with only slight modification, and
hence can be employed easily in the upper bound analysis of 3-D problems. Considering
the characteristics of the computational formulation (10) and (11), we use the penalty
function method to deal with the incompressibility condition.

Imposing the incompressibility constraint ¢, = u,; = 0 on the plastic zones by means
of the penalty function method, the penalty function term is

gaj e dV = gaj 'CedV. (12)

v

Discretizing eqn (12) by the finite element technique, and substituting eqn (6) into eqn
(12), we have

N
;ocjsf,de gazf & Ce,dV = o lel-lJl,.(ST(Gu),-é, (13)

where G, = B]CB,, C, C is a constant matrix and « is a sequential penalty factor which is
adjusted in a suitable manner during the iterative process so as to obtain the best numerical
accuracy and stability ; 7is the set of all plastic integration points.

Generally speaking, volumetric locking often occurs due to over-restrictions on the
constraint condition when the penalty function method is used to deal with the incom-
pressibility constraint. Locking can be avoided by employing selective-reduced integration
to make the assembled volumetric stiffness matrix singular. However, our trial tests with
reduced integration of the penalty function term (13) showed that fictitious values of the
limit loads can be obtained. The calculated limit loads may be even smaller than the real
limit loads, even though the computational formulation is based on the upper bound
theorem of plasticity. Moreover, the convergence of reduced integration is much worse
than that of full integration. The reason may be that when reduced integration is used, the
incompressibility constraint cannot hold accurately, and the loaded body is flexibly modeled
owing to the violation of the incompressiblity constraint. Since the present algorithm is
aimed to obtain the upper bounds to the real limit loads, the incompressibility condition
must be satisfied everywhere. Hence, it is necessary to use the same integration points for
both the goal function term (8) corresponding to the plastic dissipation work and the
penalty function term (13) induced by the incompressibility condition. The numerical tests
by the authors showed that the proposed algorithm for the limit analysis of 3-D structures
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is not sensitive to the volumetric locking effect. The so-called volumetric locking does not
appear when full integration is adopted.

From eqns (8), (9) and (13), we can obtain the discrete version of the 3-D upper bound
analysis formulation :

v=min: ) p|J];\/6"Gd (14)

iel
sit. F'6=1 (15)
8'(G) =0, iel (16)

This is a nonlinear mathematical programming problem with only equality constraints. Its
goal function is nonlinear and nonsmooth. This feature becomes the main difficulty in the
upper bound analysis.

3. A DIRECT ITERATIVE ALGORITHM

A direct iterative algorithm is constructed to solve the proposed formulation (14)-
(16). The basic characteristic of this algorithm is that at each iteration the rigid zones are
distinguished from the plastic zones, the respective constraint conditions are imposed on
them, and the goal function and constraint conditions are modified accordingly. The
difficulties caused by undetermined rigid zones and undifferentiable goal function are
overcome. The problem is reduced to an equivalent elastic one.

3.1. Iterative procedure

As for the formulation (14)—(16), all constraints are equalities, and the goal function
is convex but not continuously differentiable and its minimum is not stationary. The
nonsmoothness in the derivatives may cause trouble in the gradient or the minimization of
the goal function.

We first assume that the strain at every Gauss point does not vanish, i.e.

§TGS #£0, iel (17)

Introducing the Lagrange multiplier u to remove F'6 = 1, we get the minimization problem
as follows:

min: Y p|J];\/0"Gd—u(FT5—1) (18)

iel

st 0"(G)o=0, iel (19)

The constraint (19) can be removed simply by the penalty function method. According to
the necessary conditions of minimization, we have

piJ1:G;0 _
iel /5TGI_5 =HE 0)
F'6 =1 (21)
8T(G,)d =0, iel (22)

Point multiplying the two sides of eqn (20) by 8, we can find that u is a discrete solution of
the limit load multiplier v. Equations (20)—(22) are a set of nonlinear equations, and are
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not easy to solve directly. In general, the solution can only be approached iteratively and
numerically. Hence, we construct an iterative scheme by linearizing the set of equations
(20)—(22) as follows:

1J1,G 8,
PG 23)
iel \/5;5(;1_5,‘_

FT6,, =1 (24)
8 1(G)iby =0, el (25)

where d;, , and p,, | are the nodal velocity vector and the limit load multiplier at the K+ 1th
iteration, respectively. The relation between them is

G| = Zpi1J|idz+1Gf5k+1 '

iel /5{Gi5k

The iterative process of eqns (23)—(25) actually corresponds to solving a series of the
minimization problems of quadratic functions as follows:

(26)

/187G,
min: y P70 G0 @7
EING
st Fo=1 (28)
0(G)O =0, iel (29)

They are very similar to solving a series of relevant elastic problems.

However, in the general case, the matrix G, is only positive semi-definite, such that the
term 8; G,5, may vanish for some nontrivial vectors J,. When 6; G5, vanishes, the above
iterative process cannot go on normally. Hence, this case needs dealing with specially, so
as to ensure each iterative step can proceed smoothly.

Prior to the k+ 1th iterative step, one should examine the strain value of every inte-
gration point one by one to find out if §; G,5, vanishes or not. So the set 7 of all integration
points can be divided into the rigid zone point subset R, ., and the plastic zone point subset
P, ie.

I= Rk+1 UPk-H (30)
Ry = {icl, 067G, =0} (31)
Pk‘l = {ie I, 51‘TG,5[‘ -_)é 0} . (32)

The determinations of set R, , and P, are essential for removing those at the rigid state
from the sum of the integration points of the goal function so as to ensure that the
next iteration can proceed smoothly. In the meantime, physically, we can also learn the
distribution of the plastic and rigid zones during the iterative process by eqns (30)—(32).
For this reason, the constraint condition is imposed on the rigid zone points as follows :

5TG,O =0, icR,. (33)

For the points in R, ,, the constraint condition (33) can guarantee the satisfaction of
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the incompressibility condition. For the points in P, , the following constraint condition
is imposed so as to satisfy the incompressibility constraint :

0G0 =0, iePy,,. (34)

Considering eqns (33) and (34), we get the modified iterative form

O N (35)
Fo,,, =1 (36)

35 1(G)diy =0, iePy,, 37
S1.1Gd, 1 =0, ieRe,,. (38)

Then we obtain a series of minimization formulations of quadratic functions cor-
responding to eqns (35)—(38) as follows:

min: y 20760 (39)

st F'=1 (40)
57(G)S =0, ieP,,, (41)
TGS =0, icR,,. (42)

This modified iteration formulation is always valid. The rigid zones are recognized from
the plastic zones, and consequently the goal function and the constraint conditions are
modified. The difficulties caused by the nonsmooth goal function and the incompressibility
condition are overcome.

3.2. The iterative process
The algorithm proceeds as follows :

Step 0 (choosing an initial estimate). The selection of the initial velocity field hardly
matters at all to the convergence of iteration. It can be proved that from any initial trial
solution, the subsequent iterations are locked in a certain convex hull that contains the
exact solution of the problem. For convenience, here we solve the initial value as a min-
imization problem as follows:

min: Y p,|J|,67G,é (43)
iel

st. F'o=1 (44)

87(G)6 =0, iel (45)

Introducing the constraint conditions as eqns (44) and (45) to the goal function by the
Lagrange multiplier technique and penalty function method, respectively. Based on the
minimization conditions, the above problem is equivalent to solving a set of linear algebraic
equations:
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2 PGBy + 3 #5(Gu)ido = AoF (46)
iel el
F'5, = 1, (47)

where 4, is the Lagrange multiplier and o} is the initial penalty factor.
From eqns (46) and (47), we can solve the initial velocity field §,. Substituting é, back
into eqn (14), we obtain the initial estimate of the limit load multiplier :

vo =Y plJI/O1Gd, - (48)

iel
The computation shows this procedure can produce close estimates of the actual solution.

Stepk+1. (1) Asstated in Section 3.1, we examine the strain value of every integration
point to find out if it vanishes or not, and determine the rigid zone point set R, , and
plastic zone point set P, ;.

(2) Solution of the minimization problem:

J1.67G,8
min: y P10 GO (49)
Py ,/52G,—5k
st F'é=1 (50)
07(G)6 =0, ieP., (5D
5TG,-5 = 0, l‘e Rk+] . (52)

The constraint conditions in eqns (50), (51) and (52) can be removed by the Lagrange
multiplier technique and the penalty function method, respectively. According to the min-
imization conditions, the above problem is equivalent to solving the set of linear algebraic
equations as follows :

plljllclé i i
== + Z Bir1 Gibiyr + Z U 1(G) bkt = Aep i F (53)
fe P \/52G,(5,{ 1€ Ry ieP

F'o,,, =1, (54)

where o, ; and B, are the penalty factors at the k+ 1th iteration, and A, , is the Lagrange
multiplier at the £+ 1th iteration.

From eqns (53) and (54), we get the iterative velocity value J,, ,. Substituting J,.
back into eqns (26) and (14), we have

o = Y pilJ1:88 1 Gidi o

iePr i, /52:Gi5k
Vi1 = prl‘”f\/ E+IGi5k+l - (56)

iel

(35)

(3) Solution of the sets of linear equations. During the process of each iteration, the
equivalent programming formulation of eqns (43)—(45) or (49)—(52) has the general form
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min:d;, A()0, (57)
sit. F,,, =1, k=0,1,2,..., (58)

where A is a symmetric positive definite matrix whose elements are functions of é,, and
assembled by the different linear combinations of G, and (G,), corresponding to every
integration point.

At each iterative step k+ 1, we treat A as a constant matrix and solve the unconstrained
quadratic programming problem, i.c.

min:6TAS—24(FT6—1), (59)
where 4 is the Lagrangian multiplier. The solution of eqn (59) is

|
A=\ d=jv, OTAO =, (60)
F'v

where v is the solution of the sparse linear system Av = F.
(4) Convergence criteria. The iterative process is terminated as soon as

Ve = vl < VOLI (61)

M < VOL2, (62)
fi Ol
where VOL1 and VOL2 are the desired accuracies of the caculation.
If inequalities (61) and (62) cannot be satisfied, the procedure will modify the penalty
factors and then return to proceed with the next step of the iteration.
(5) Choosing the penalty factor. The penalty factor sequence {e,} is properly modified
by the convergence of constraint conditions during the iterative process, i.e.

,- L (6)

Thor = {w‘k when |(¢1)i] = 01()c 1| and (e )elI” >0 e 11
o,  otherwise
where k is the iterative step, i is the integration point, and 0 < 0 < 1, y = 1 are constant
parameters. The step length of the sequence {a,} is controlled by modifying y and 6 so that
we can obtain the desired solutions satisfying the accuracy by adjusting =z, at every iterative
step. Adjusting the penalty factors during the iterative process can assure the numerical
stability of the iteration algorithm, accelerate the convergence rate of the iterative process
and make the velocity field J, satisfy the constraint conditions well. According to our
numerical tests, the selections of #e[0.1, 0.4] and y€[6, 10] can obtain the best effects.
Through the above iteration process, a limit load muitiplier sequence {v,} is obtained.
If the constraints (51) and (52) hold exactly, it can be proved that {v,} is a monotonically
decreasing sequence, and the limit load multiplier and the associated velocity field produced
by the iteration process converge to the upper bounds of real solutions.

4. APPLICATIONS

The proposed numerical method has been coded in a computer program operating on
a 486 personal computer. Numerical experiments were performed in order to optimize the
numerical efficiency and accuracy by taking into account different operational parameters
such as mesh density, the rigid zones check criterion, the convergence criterion, the penalty
factor, etc. The said algorithm has been applied to the limit analysis for cylindrical shells
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with part-through slots in order to prove its effectiveness. The numerical results are com-
pared with existing solutions and the results of detailed 3-D elastic—plastic finite element
analysis.

A part-through slot is a common defect configuration on the surface of pressure vessels.
It can be formed by corrosion or produced by abrading surface cracks. Part-through slots
may have greater or lesser effects on the load-carrying capacity of pressure vessels. The
evaluation of these effects caused by part-through slots presents a problem to the engineers.
In principle, this problem belongs to the regime of plastic limit analysis of 3-D structures.
Using the presented algorithm, the numerical limit pressures have been computed for
cylindrical shells with slot-type defects on the surface. These defects include part-through
spherical, ellipsoidal and rectangular slots. The failure modes are also studied.

First of all, the limit pressures are computed by the proposed algorithm for cylindrical
shells without slot defects and with various dimensions and shapes of part-through slots.
We also employ the ADINA program to compute the same problems by 3-D incremental
elastic—plastic analysis. The radius ratio kk (i.e. the external to internal radius) is 1.20. The
cylinder thickness is 20 mm. The yield stress o, is 200 MPa. Considering the symmetry, we
discretize a quadrant of a cylindrical shell by 3-D eight-node isoparametric finite elements.
The corresponding displacement constraints are imposed on the symmetric boundary. For
the cylindrical shell with slot defects, owing to different shapes and sizes of slots, the finite
element mesh should be chosen appropriately so that the distribution of the elements is
uniform and focused around slots. In terms of different slot parameters, the total number
of elements employed ranges from 400 to 1000, and the total number of nodes adopted
ranges from 700 to 1200. The finite element mesh adopted is shown in Fig. 2. The above
calculated results are compared with the analytical solutions in Table 1. According to Table
1, the results obtained by this paper agree well with those of the ADINA program and
analytical solutions, while the proposed algorithm costs much less computer time than the
incremental method. The calculated values for the limit pressures are the upper bounds
very close to the real limit loads. Table 2 represents the convergence of the values of the

(©) (d)

Fig. 2 The finite element mesh: (a) cylinder without defect; (b) cylinder with a part-through
spherical slot; (c) cylinder with a part-through ellipsoidal slot; (d) cylinder with a part-through
longitudinal slot.
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Table 1. Comparison of the limit pressures (MPa) obtained by different

methods
Structure This paper ADINA  Analytical solution
Fig. 2(a) 42.463 41.925 42.107
Fig. 2(b) 39.824 39.202
Fig. 2(¢) 35.716 35.075
Fig. 2(d) 28.594 28.001

Table 2. The iterative values of limit pressures (MPa)

Iterative step Fig. 2(a) Fig. 2(b)
0 53.842 52.614
1 49.935 49.822
2 46.712 47.354
3 44.636 45.427
4 43.182 43.964
N 42.629 42.803
6 42.520 41.745
7 42.463 40.986
8 40.623
9 40.325

10 40.116
11 39.957
12 39.865
13 39.824

limit pressures for the cylinders as shown in Fig. 2(a) and (b). The iterative values of limit
pressures decrease progressively as the iterative step increases, and finally converge to the
real limit loads. The numerical limit load may generally be found in a reasonable number
of iterative steps. The iterative process shows stable convergence and computational
efficiency. This algorithm is particularly suitable for computing the limit loads of 3-D
complicated structures.

Kitching and Zarrabi (1981, 1982) considered part-through rectangular slots theor-
ctically and experimentally. They computed a lower bound to the limit pressure of a
cylindrical shell with a part-through rectangular slot using a linear optimization technique
and did experimental investigations to estimate plastic limit pressures for comparison with
the calculated results. However, because they introduced some assumptions to simplify the
limit analysis, the calculated limit pressures are considerably below real limit pressures.
This paper has computed an upper bound to the limit pressure for a cylindrical shell
with part-through rectangular slots for the geometric parameters corresponding to some
theoretical investigations by Kitching and Zarrabi (1981). The comparison of the numerical
results with the theoretical lower bound from Kitching and Zarrabi (1981) and that due to
approximate analysis of Ruiz (1978) is shown in Fig. 3. In Fig. 3, Q denotes the ratio of

Lo

— ——~— Kitching and Zarrabi
——~-— Ruiz

This paper

Fig. 3. Comparison of the results from this paper with those from Kitching and Zarrabi (1981) and
Ruiz (1978).
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(b)
Fig. 4. The failure modes at the limit state: (a) global collapse; (b) local collapse.

the ligament thickness to the cylinder thickness, p represents a geometric parameter which
combines the slot geometry and the cylinder dimensions, and P is the dimensionless limit
pressure defined as the ratio of the limit pressure for a cylinder with a slot to that for a
cylinder of the same dimensions without a slot. Figure 3 shows the results obtained in this
paper (upper bound) are greater, and sometimes reasonably greater than those of Kitching
and Zarrabi (1981) (lower bound) and are lower than those from Ruiz (1978) ; the results
from Kitching and Zarrabi (1981) may be too conservative. The combination of the results
from this paper and Kitching and Zarrabi seems to imply a safe and nonconservative design
method.

The cylindrical shell with small slot dimensions and a large ligament is almost in a full
yielding state when the internal pressure reaches the limit load. The local plastic hinge will
not generally be produced around the slot. In this case, the effect of a slot on the limit
carrying capacity of cylinder is insignificant, which is mainly the weakening of the net
section. The global collapse of the cylinder will take place at the limit state. The plastic
region at the limit state is shown in Fig. 4(a).

For the cylindrical shell with large slot dimensions and a small ligament, plastic yielding
first occurs at the bottom of the slot, and expands rapidly along the longitudinal direction
on the surface of the slot where the stress level is relatively high, while the plastic region
extends slowly along the circumferential and radial direction of the cylindrical shell. As the
internal pressure increases, new plastic regions are formed on the inside surface around the
slot. With the plastic regions extending continuously, two rigid regions are formed on the
inside surface around the slot and the outside surface far from the slot, respectively. When
the rigid regions on the inside surface around the slot yield, a plastic hinge is formed around
the slot. The cylinder reaches the limit state and becomes a collapse mechanism. The
ligament of the slot bulges outward. In this case, local leakage will occur within the slot for
the cylindrical shell. Figure 4(b) represents the collapse mechanism corresponding to the
local failure mode.

5. CONCLUSIONS

In the present paper, we have proposed a numerical method for the limit analysis of
3-D structures. The method is built on sound physical, mathematical and computational
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foundations. An upper bound to the limit load can be obtained by a direct iteration
algorithm. By distinguishing the rigid zones from plastic zones gradually, imposing the
respective constraints on them, and modifying the goal function and the constraint con-
ditions accordingly, the numerical difficulties caused by the nonlinearity and nonsmoothness
of the goal function and the incompressibility of plastic deformation are overcome. Every
step of the iterative process is equivalent to solving a relevant elastic problem. It has been
proved by the authors that the iterative process is convergent monotonically even without
a careful and elaborate initial value. Unlike the incremental method, the error of the
iterative solution is not accumulative.

This numerical method can be implemented in the upper bound analysis of complicated
3-D structures. It was successfully applied to compute the limit pressures and investigate
the failure modes for cylindrical shells with various part-through slots under the action of
internal pressures. The numerical applications confirm the validity and usefulness of the
present method. It can be also generalized for 3-D structures subjected to combined constant
loads and proportional loads. In this case, a set of surface loads acting on a region S of the
boundary consists of “live” loads F' which are described by a given distribution but a
common unknown load multiplier to be minimized and “dead” loads F¢ whose value and
distribution is assigned. The programming formulation can be written as:

v=min: Y p,|J]|/67G,6— (F)T6 (64)
iel

st (F)6=1 (65)

87(G)6=0, iel (66)

The iterative process is similar to that presented in the preceding Section 3.2.

The proposed numerical method possesses high efficiency, little computation and
good numerical stability. The numerical examples show the computational results are
satisfactory. It can be easily implemented by means of current existing displacement finite
element codes for elastic analysis. Because of the use of the displacement finite element
technique, this method is applicable to a wide variety of complicated 3-D structures and
loadings.
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